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a b s t r a c t 

This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture 

of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using 

heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth re- 

search project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was 

either confirmed through a positive swab test, or inferred through a self-reported set of recognised symp- 

toms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a 

long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). 

On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a 

participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average 

recall of 95 . 3% , a sensitivity of 100% and a specificity of 90 . 6% , an area under the receiver operating char- 

acteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given 

heart rate measurement period, whilst at the same time keeping a low false alarm rate. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Remote passive monitoring of physiological and behavioural 

haracteristics using smartphones and wearable devices can be 

sed to rapidly collect a variety of data in huge volumes with min- 

mal effort from the wearer. Such data has the potential to improve 

ur understanding of the interplay between a variety of health 

onditions at individual and population level, if rigorously collected 

nd validated [1] . Passive data collection is typically implemented 

ith a high temporal resolution [2] . Wearable fitness trackers, for 

xample, estimate parameters such as heart rate up to every sec- 

nd and up to 24 hours a day. Monitoring individuals with a range 

f health states, lifestyles, and demographic variables in combina- 

ion with data artefacts and missing data leads to high variability, 

hile multiple data streams, from heart rate and physical activity 

o GPS-based location, can be collected. Therefore, studies using 

earables and smartphones in this way exhibit several vs of big 

ata: velocity, volume, variability and variety. As such, advanced 

nalysis methodologies such as deep learning can potentially make 

 significant contribution [3] , particularly in the context of infec- 

ious diseases, such as COVID-19, the disease caused by the novel 

orona virus (SARS-CoV-2). Specific applications include individual 

creening and population-level monitoring that minimise contact 

ith infected individuals [4,5] . 

Since the outbreak of the COVID-19 pandemic in 2020, sev- 

ral deep learning methodologies have been applied to computed 

omography (CT) scans [6] and 2D X-ray images [7] to detect 

OVID-19. These methods require specific clinical equipment and 

he patient must attend a clinical facility. Consequently, it cannot 

chieve early, automatic detection when COVID-19 symptoms first 

ppear. In contrast, heart rate can be measured remotely and non- 

ntrusively using wearable devices. 

Heart rate is a biomarker of particular value in such appli- 

ations. Patterns in heart rate fluctuations over time have been 

ound to provide clinically relevant information about the integrity 

f the physiological system generating these dynamics. Previous 

tudies have not only revealed an altered heart rate variability in 

 number of medical conditions [8] , but also demonstrated that 

he degree of short-term heart rate alteration correlates with ill- 

ess severity. Analysis of the autonomic regulation of heart rate 

as also been discussed as a promising approach for detecting 

nfections earlier than conventional clinical methods and making 

rognoses [9] . 

Wearables such as Fitbit fitness trackers 1 provide indirect 

easurements of the heart rate through pulse rate estimates 

ade using photoplethysmography (PPG). In the ongoing DETECT 2 

tudy [5] , researchers are focusing on monitoring outbreaks of vi- 

al infections including COVID-19 based on the resting heart rate 

ollected in this way [10] . Other similar ongoing endeavours in- 

lude the German project Corona-Datenspende 3 , which has a co- 

ort of over 50 0 0 0 0 volunteers, and the TemPredict study in the

S 4 . 

Applied to such data sets, deep learning has the potential to au- 

omatically identify individuals with COVID-19 purely on the basis 

f data passively acquired by means of wearable devices [5,11,12] . 

o the best of our knowledge, the present study is the first to com- 

are deep learning approaches in predicting the presence or ab- 

ence of COVID-19-like symptoms using Fitbit-measured heart rate 

ata. We aim to exploit state-of-the-art methods to represent the 
1 https://www.fitbit.com/ [as of 03 August 2021]. 
2 http://detectstudy.org/ [as of 03 August 2021]. 
3 http://corona-datenspende.de/science/en/ [as of 03 August 2021]. 
4 http://osher.ucsf.edu/research/current-research-studies/tempredict [as of 03 Au- 

ust 2021]. 
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roblem by feature maps, including convolutional neural networks 

CNNs) and a convolutional auto-encoder (CAE) [13] . 

Considering the deficiency of class information in training a 

tandard CAE, in some previous works, the class information was 

pplied to latent attribute layers, leading to the supervised auto- 

ncoder introduced in [14] . Cross-entropy losses are used to min- 

mise the difference between predicted labels from latent at- 

ributes and true labels. This approach provides a certain preser- 

ation of the reconstructed feature map, taking the cross-entropy 

oss as a regularisation method. The reconstruction error and 

ross entropy loss are jointly optimised. However, the optimisa- 

ion of the joint loss requires a proper combination factor in or- 

er to balance the optimisation on reconstruction error and pre- 

iction error. Since the two types of errors originate from dif- 

erent stages of the auto-encoder model, leading to their differ- 

nt scale level, the difficulty lies in seeking a good combination 

cale. 

To circumvent this problem, we consider the task at hand as 

nalogous to anomaly detection [15] and propose a self-supervised 

raining strategy by means of fitting the reconstruction error into 

he format of contrastive loss [16] instead of conventional loss like 

oot mean square error (RMSE). In this way, contrastive loss can be 

mployed directly on the reconstruction error for positive and neg- 

tive input pairs. The method also enables validation of whether 

he model has learnt discriminative latent attributes for different 

lasses in the auto-encoder framework. 

We investigate the effectiveness of the proposed technique, 

omparing its performance to a CAE without contrastive loss, in 

ddition to other standard deep learning methods including a 

ulti-layer perceptron (MLP), a long short-term memory (LSTM) 

eural network, and a conventional CNN [13] . 

. Related work 

Recent work has investigated data streams that could poten- 

ially be used to detect COVID-19 and can be easily captured using 

mart devices and wearable equipment [17,18] , including record- 

ngs of coughing and breathing [19] and speech signals [20,21] . 

n et al. [22] proposed a machine learning-derived index reflect- 

ng overall health status of the patients with mild COVID-19, using 

he data captured from wearable biosensors. Hirten and colleagues 

23] performed an evaluation of heart rate variablity (HRV) col- 

ected by a wearable device to identify and predict COVID-19 and 

ts related symptoms. Radin and colleagues [4] analysed the rest- 

ng heart rate alongside with sleep duration data in over 47 0 0 0 

ndividuals to improve model predictions of influenza rates in five 

S states. Quer et al. [5] and Mishra et al. [12] have shown the 

otential of using heart rate, sleep duration, and activity data, 

etrieved from smart wearable devices for COVID-19 recognition. 

atarajan and colleagues [11] used a CNN to predict illness on a 

iven day using Fitbit data from 1 181 individuals, reporting an 

rea under the receiver operating characteristics curve (AUC-ROC) 

f 0 . 77 ± 0 . 03 . 

This paper describes a deep learning approach applied to Fit- 

it measurement of heart rate to predict the presence or absence 

f COVID-19-like symptoms. We explore the suitability of using a 

AE with contrastive loss, expecting to learn feature representa- 

ions by contrasting symptomatic and asymptomatic samples. Con- 

rastive learning has already been applied to detect COVID-19 from 

T scans or X-ray images as in [24] and [25] . By using contrastive

earning for a CAE, we aim to incorporate the class information 

nto its reconstruction error to assist the model in achieving more 

ifferentiable latent attributes, and reaching sufficient distance be- 

ween the reconstruction errors of symptomatic and asymptomatic 

amples. 

https://www.fitbit.com/
http://detectstudy.org/
http://corona-datenspende.de/science/en/
http://osher.ucsf.edu/research/current-research-studies/tempredict
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Table 1 

Gender-, age-, and site-related distribution of participants per data subset. 

Positive participants Health control 

Pre-training for testing for testing 

Genders Female 14 5 5 

Male 35 14 14 

Locations Italy 18 7 7 

Spain 19 6 6 

Denmark 12 6 6 

Ages ≤ 30 1 2 2 

30 - 39 10 3 4 

40 - 49 12 6 5 

50 - 59 19 6 6 

60 - 69 6 1 1 

≥ 70 1 - - 
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. Data collection 

The data used in this work was collected as part of the IMI2 

ADAR-CNS programme 5 , which is currently being conducted at 

ultiple clinical sites in several European countries. Participant re- 

ruitment and data collection in the RADAR-MS study started in 

une 2018. As of March 1, 2020, 499 participants had been enrolled 

nd 403 (81%) remained in the study [26] . 

Heart rate data was collected continuously 24-hours-a-day/7- 

ays-a-week using a Fitbit wristband combined with participants’ 

wn Android smartphones where available, or a provided Motorola 

5, G6, or G7. Fitbit Charge 2 or Charge 3 devices were provided 

o participants, who were asked to wear the device on their non- 

ominant hand. Meanwhile, an app-based questionnaire was dis- 

ributed to all active participants on March 25, 2020 and again on 

pril 8, 2020. By April 15, 2020, at least one of the questionnaires 

as completed by 399 participants (99%). 

We used two definitions to determine the prevalence of 

OVID-19 in participants [26] : In the first, referred to as CD1, 

articipants experience fever or anosmia/ageusia in combina- 

ion with any other COVID-19 symptoms including respiratory 

ymptoms, tiredness and gastrointestinal symptoms, or respi- 

atory symptoms plus two other COVID-19 symptoms. In the 

econd definition, CD2, participants experience fever plus any 

ther COVID-19 symptoms, or respiratory symptoms plus anos- 

ia/ageusia. Laboratory-confirmed cases are included in both case 

efinitions [26] . 

We considered Fitbit heart rate measurements made between 

1 February and 20 May 2020, from 87 participants in Denmark, 

taly and Spain, with an age range from 23 to 73 years (mean 

 46 . 5 ± 10 . 5 standard deviation). Sixty eight of these MS partic-

pants (30 female, 38 male) reported symptoms characteristic of 

OVID-19. However, in 49, symptoms did not meet CD1 or CD2 

riteria. Heart rate data from these 49 participants was used for 

odel pre-training (pre-training set). For testing, we applied leave 

ne subject out (LOSO) cross-validation (CV) [27] on the data of 

he 19 MS participants, whose symptoms meet CD1 or CD2 crite- 

ia. Each of these 19 symptomatic participants was paired with a 

OVID-19-like symptom-free control participant with MS matched 

or site and gender and being at a similar age (cross-validation 

et). Table 1 summarises the numbers of participants per data sub- 

et as a function of the independent variables gender, age, and 

ocation. 

Heart rate data of the participants were assigned into temporal 

egments, defining a 14-day interval extending from 7 days preced- 

ng symptom onset to 7 days following symptom onset in which 

e sought to identify infection-related variations in heart rate. The 

nterval mainly covers the duration of the COVID-19 incubation pe- 
5 https://www.radar-cns.org/ 

w

i

r

3 
iod [28] , and minimises the anomalous effects of day-to-day vari- 

tions in activity, such as those observed between weekdays and 

eekends. 

Fig. 1 demonstrates the segmentation and subsequent data pre- 

rocessing procedure for the heart rate data of a participant with 

eported COVID-19-like symptoms. A heart rate segment over 14 

ays centred at 0 0:0 0 at the day of reported symptom onset, i. e., 7

onsecutive days before the day of reported symptom onset plus 7 

onsecutive days starting with the day of reported symptom onset 

red box on top of Fig. 1 ) is referred to as symptomatic segment . In

ontrast, an asymptomatic segment stands for any 14-days interval 

f consecutive heart rate data again starting at 0 o’clock that is at 

east 7 days distant from a symptomatic segment (green box in top 

f Fig. 1 ). 

Asymptomatic segments were created by shifting a 14-days 

indow in full day steps over periods at least 7 days distant 

rom the boundaries of a symptomatic segment. With the cho- 

en 7-days distance of asymptomatic segments from symptomatic 

egments we presume, that (i) a participant might not have al- 

eady been infected 14 or more days prior to the onset of symp- 

oms, and (ii) participants might have recovered from illness 14 

ays after the onset of symptoms at the latest. From the 49 

articipants of the pre-training set, totally 49 symptomatic seg- 

ents and 1 470 asymptomatic segments are extracted. Since 

he number of available symptomatic and asymptomatic segments 

s highly imbalanced, we replicate the symptomatic segments to 

he number of asymptomatic segments to guide the detection 

odel weighted in favour of the minority class. For the LOSO CV 

rocedure, 19 symptomatic and 570 asymptomatic segments are 

cquired from participants with reported symptoms, and 1 140 

symptomatic segments from the control participants. An overview 

f available symptomatic and asymptomatic segments is given 

n Table 2 . 

Instantaneous heart rate estimates were derived from the PPG 

ignal and ideally uploaded every five seconds (blue curve in the 

iddle of Fig. 1 ). The mean of 5 min is taken to smooth heart

ate measurements while still tracking slow short-term changes 

n the heart rate. Moreover, this approach alleviates the effect 

f different sam pling rates of heart rate measures in Fitbit data, 

nd missing estimates observed in real living conditions, both 

f which making it very difficult to study other features than 

ean heart rate in 5-minutes intervals. Furthermore, 5 min rep- 

esents the time interval usually recommended for short-term 

eart rate variability analysis, assuming a constant mean heart rate 

HRV). 

Missing data over full 5-minutes intervals was filled with the 

edian value of the overall 14-days segment, which guarantees for 

ore robustness against outliers as compared to the mean value. 

inally, we have a single heart rate value every 5 min. Despite the 

igh completeness of heart rate segments (see Table 2 ), the miss- 

ng data can be potentially spread over an entire heart rate seg- 

ent. A too small short-term duration leads to more empty mean 

alues, whereas a too large short-term duration results in the in- 

ormation loss of the variations in heart rate segments. The re- 

ulting smoothed heart rate trajectory is considered appropriate 

o detect global heart rate patterns associated with COVID-19-like 

ymptoms (red curve in middle of Fig. 1 ). 

We then transform the averaged heart rate data of each seg- 

ent into a feature map, i. e., an image of size 24 × 168 pixels 

bottom of Fig. 1 ), in which each pixel represents a 5-minutes 

eart rate sampling point. Thereby, each column encodes a heart 

ate trajectory of 2 h ( 24 × 5 min), resulting in a covered interval 

f overall 14 days by 168 columns ( 168 × 2 h). In our experiments, 

e verify that this set-up of the feature map is effective as the 

nput of our deep learning models, leading to promising detection 

esults. 

https://www.radar-cns.org/
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Fig. 1. Segmentation and pre-processing of heart rate data of a participant with reported COVID-19-like symptoms. Top : Heart rate data recorded 24-hours-a-day/7-days- 

a-week from 21 February to 20 May 2020 (total 90 days). Onset (black vertical bar) indicates 0 o’clock at t 8 he reported symptom onset date. Red rectangle – 7 days heart 

rate data before and after symptom onset representing a symptomatic segment; green rectangle – asymptomatic segment. Middle : Symptomatic segment. Blue curve –

unprocessed heart rate trajectory of the red rectangle above; red curve – heart rate trajectory averaged over 5-minutes intervals. Bottom : Representation of the symptomatic 

segment as 24 × 168 sized image of 5-minutes heart rate data related pixels. Each column represents an interval of 2 h, the 168 columns sum up to 14 days. 

Table 2 

Available symptomatic and asymptomatic segments per data subset. Data completeness 

[%]of respective heart rate segments is given in parentheses (mean + std). 

Positive participants Health control 

# (%) Pre-training for testing for testing 

Symptomatic 49 (98 . 7 ± 0 . 3) 19 (97 . 6 ± 0 . 2) - 

Asymptomatic 1470 (98 . 1 ± 0 . 4) 570 (97 . 4 ± 0 . 2) 1140 (99 . 2 ± 0 . 5) 
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. Methodology 

An approach to learn representations from a feature map is 

o use a CAE [29] , which contains an encoder to learn latent at-

ributes of the original input, and a decoder for reconstructing the 

riginal input from the learnt latent attribute. The dimensionality 

f the latent attributes is designed as a bottleneck imposed in the 

rchitecture. It hence can be seen as a compressed knowledge rep- 

esentation of the input. To reproduce the original input at the out- 

ut of the decoder, the reconstruction error is minimised when op- 

imising an auto-encoder network. To incorporate the class infor- 

ation during the optimisation, we apply contrastive loss [16] to 

he CAE reconstruction error in order to guide it to learn suffi- 

iently discriminative latent attributes for different classes. 

.1. Architecture of CAE 

The encoder part of our CAE is a stack of convolutional lay- 

rs, an example of 4 layers is illustrated in Fig. 2 . Following each

onvolutional layer, batch normalisation is used and a parametric 

ectified linear unit (PReLU) performs as the activation function. 

ax-pooling is then used to process the activations to reduce the 

patial size of the feature maps. The encoder part is therefore a 
4 
equential cascade of convolutional layer – batch normalisation –

ReLU – max pooling. Given N heart rate segments, their features 

 x 1 , x 2 , . . . , x i , . . . , x N ] are created as introduced in Section 3 . The

ncoder f enc (·) processes a feature x i , and its flattened output is 

inearly projected to latent attributes 

 = f enc (x i ) . (1) 

he decoder presents an inverse processing of the encoder. For 

ach decoder layer, the feature map mainly passes through trans- 

osed convolution and transposed max-pooling, also known as de- 

onvolution and de-pooling. Batch normalisation is employed in 

etween, followed by PReLU as the activation function. The de- 

oder f dec (·) outputs the reconstructed feature map 

ˆ 
 i = f dec (h ) . (2) 

he specifications of our CAE are given in Table 3 . In experiments, 

e consider different numbers of convolutional layers in the CAE. 

he last encoder layer determines the dimensionality of the flatten 

ayer, we hence adjust the length of its following fully-connected 

ayer to optimise the CAE performance. 
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Fig. 2. The convolutional auto-encoder (CAE) architecture with 4 encoder layers and 4 decoder layers as an example. An encoder layer is a sequence of convolution –

batch-normalisation – PReLU – max-pooling . A decoder layer is a sequence of transposed convolution – batch-normalisation – PReLU – transposed max-pooling . The 

distance between the original and reconstructed image represents the reconstruction error. 

Table 3 

Specifications of our CAE models. Each convolution and pooling layer, as 

well as de-convolution and de-pooling layer contains its own kernel size, 

stride, padding size, and number of channels. ∗= dimensionality depends 

on the total number of layers, ∗∗= dimensionality of latent attributes. fc 

abbreviates fully-connected layer. 

Blocks Kernel Stride Padding # Channels 

conv1 (5,5) (1,1) (2,2) 32 

pool1 (2,2) (2,2) - 32 

conv2 (5,5) (1,1) (2,2) 64 

pool2 (2,2) (2,2) - 64 

conv3 (5,5) (1,1) (2,2) 128 

Encoder pool3 (2,2) (2,2) - 128 

conv4 (5,5) (1,1) (2,2) 256 

pool4 (3,3) (3,3) - 256 

conv5 (3,3) (1,1) (1,1) 512 

conv6 (3,3) (1,1) (1,1) 1024 

flatten ∗
fc ∗∗
fc ∗∗
deconv6 (3,3) (1,1) (1,1) 512 

deconv5 (3,3) (1,1) (1,1) 256 

deconv4 (3,3) (1,1) (1,1) 128 

depool3 (3,3) (3,3) - 128 

deconv4 (5,5) (1,1) (2,2) 64 

Decoder depool4 (2,2) (2,2) - 64 

deconv5 (5,5) (1,1) (2,2) 32 

depool5 (2,2) (2,2) - 32 

deconv6 (5,5) (1,1) (2,2) 1 

depool6 (2,2) (2,2) - 1 
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An auto-encoder is typically optimised by minimising the re- 

onstruction error, such as the root mean squared error (RMSE): 

MSE = 

√ 

1 

N 

N ∑ 

i 

∣∣x i − ˆ x i 
∣∣2 

. (3) 

he difficulty in finding good latent attributes lies in setting it to 

 proper dimensionality. Too long latent attributes may contain 

edundancies for easier reconstructing the original input, but fall 

hort of concentrating on learning the saliently discriminative fea- 

ures for different classes. Meanwhile, shorter latent attributes can 

ave less or limited representation capability. Besides, the opti- 

isation of an auto-encoder considers no class information, and 

ence the learnt latent attributes are not well oriented to be dis- 

riminative for different classes. Specifically, for our classification 

ask, the auto-encoder may tend to learn the latent attributes that 

an better reconstruct the original feature map, while ignoring 

ome salient attributes that indicate the difference between symp- 

omatic and asymptomatic segments. 
5 
.2. Contrastive loss 

To incorporate class information – symptomatic and asymp- 

omatic – into the optimisation of CAE, we fit the reconstruction 

rror of the two classes into contrastive loss [16] . As analogues to 

nomaly detection, we expect the CAE to output a low reconstruc- 

ion error for asymptomatic segments, and a high reconstruction 

rror for symptomatic segments. Therefore, the loss function for 

ur contrastive CAE can be seen as 

oss = 

√ 

1 

N 

N ∑ 

i 

| x n 
i 

− ˆ x n 
i 
| 2 + ( m −

√ 

1 

N 

N ∑ 

i 

| x p 
i 

− ˆ x p 
i 
| 2 ) , (4) 

here the superscripts p and n are used to distinguish positive 

symptomatic) and negative (asymptomatic) samples. Ideally, the 

econstruction error for a negative pair, i. e., an original and a re- 

onstructed feature map for an asymptomatic segment, is expected 

o be 0, indicating a successful reconstruction of the original in- 

ut at the decoder. In contrast, the reconstruction error for a pos- 

tive input pair, i. e., an original and a reconstructed feature map 

or a symptomatic segment, is expected to be the margin value m . 

herefore, the difference in classes leads to different reconstruction 

rrors from our CAE. 

. Experiments & results 

We conducted a series of experiments to test the model pre- 

ented in Section 4 . The contrastive CAE was pre-trained with the 

eart rate segments of 49 participants that reported COVID-19-like 

ymptoms, but did not meet the CD1 or CD2 criterion. We then 

pplied LOSO CV to the heart rate segments of the 19 individu- 

ls who meet CD1 or CD2, and their corresponding symptom-free 

ontrol group. 

The performance is mainly compared to a CNN of the same 

rchitecture of our CAE encoder, and a CAE that is optimised us- 

ng RMSE loss. Models of different layers are tested using mean 

nweighted average recall (UAR, chance-level is 50%), sensitivity, 

nd specificity, the area under receiver operating characteristic 

urve (AUC-ROC), and Matthews correlation coefficient (MCC) as 

he evaluation metrics throughout the experiments. We consider 

atent attributes of different lengths, namely 50, 100, 300, 500, and 

 0 0 0. For each length, a two-layers MLP is separately optimised 

o project the learnt latent attributes to classes – symptomatic or 

symptomatic. Further, the contrastive CAE provides the possibility 

o directly perform a classification based on its reconstruction er- 

or using classic machine learning techniques, for instance, logistic 

egression. 
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Table 4 

Evaluation results for the binary COVID-19 yes/no (based on the symptom CD1/CD2 def- 

initions above) classification [%] of the baseline methods and contrastive CAE models 

with a different number of (#) layers. For the contrastive CAE, classification is per- 

formed based on reconstruction error using logistic regression. 

# Layers UAR Sensitivity Specificity AUC-ROC MCC 

MLP (1D) 61.0 63.2 58.8 0.542 0.046 

LSTM (1D) 67.3 73.7 61.0 0.577 0.074 

LSTM (2D) 72.8 73.7 71.9 0.685 0.105 

CNN (2D) 76 . 0 78 . 9 73 . 1 0 . 705 0 . 122 

1 58.8 70.2 47.4 0.508 0.044 

2 83.0 84.2 81.9 0.769 0.176 

Contrastive 3 90.6 100 . 0 81.3 0.878 0.213 

CAE 4 95 . 3 100 . 0 90 . 6 0.944 0.310 

5 93.9 100 . 0 87.7 0.931 0.270 

6 90.9 100 . 0 81.9 0.883 0.217 
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Table 5 

Comparison of results [%] between convolutional auto-encoders (CAEs) with 4 en- 

coder and 4 decoder layers trained with RMSE loss vs contrastive loss. Classifica- 

tion is performed based on the latent attributes. # Attr: dimensionality of latent 

attributes. 

# Attr UAR Sensitivity Specificity AUC-ROC MCC 

50 66 . 6 57.9 75.4 0.545 0 . 080 

100 58.5 47.4 69.5 0.465 0.038 

CAE 300 63.4 63.2 63.7 0.527 0.058 

500 65.8 68.4 63.2 0.591 0.068 

1000 55.3 47.4 63.2 0.448 0.023 

50 92.0 100 . 0 83.9 0.904 0.233 

Contrastive 100 92 . 2 100 . 0 84.3 0.907 0.236 

CAE 300 90.9 100 . 0 81.9 0.890 0.217 

500 90.9 94.7 87.1 0.881 0.247 

1000 71.9 68.4 75.4 0.597 0.105 
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The models’ parameters are optimised using an Adam opti- 

iser. The learning rate decays from 0.03 to about 0.0 0 01 with a 

ecay factor of 0.33 after every 50 epochs. We keep using a batch 

ize of 32 for all experiments. The hyper-parameters are selected 

fter careful fine-tuning to assure stable and fast convergence of 

ur models. 

.1. Contrastive CAE vs CNN vs MLP & LSTM 

We first compare our proposed contrastive CAE with MLP and 

STM neural networks [13] directly applied to the one-dimensional 

-min average heart rate segments without formatting it into fea- 

ure maps (noted as “1D” in Table 4 ). LSTM and CNN are then 

ested with the two-dimensional formatted feature maps (noted as 

2D” in Table 4 ) for fair comparisons. 

The MLP is found to be best with 4 layers ( 10 0 0 − 250 − 50 −
0 hidden units of each layer), and its performance is shown in 

able 4 . The LSTM model performs best when using 64 hidden 

nits in its recurrent cell for 1D segments, and 128 hidden units 

or 2D feature maps. The CNN model achieves its best perfor- 

ance with 3 convolutional layers, demonstrating significant im- 

rovements over the baseline models applied to 1D segments ac- 

ording to paired t-tests at significance level α = 0 . 05 . For the 2D

eature maps, the CNN outperforms the LSTM neural network in 

eneral. 

Our proposed contrastive CAE with 4 encoder and 4 decoder 

ayers performs best reaching a considerable performance improve- 

ent over other methods. For this, we apply logistic regression to 

he reconstruction error of the test set, and achieve a UAR of 95 . 3% ,

 sensitivity of 100 . 0% , a specificity of 90 . 6% , an AUC-ROC of 0.944,

nd the MCC of 0.310. Across all LOSO CV folds, the best result 

ields significant improvements over the CNN approaches in paired 

-tests ( p < 0 . 05 ). 

.2. Contrastive CAE vs conventional CAE 

We next compare our proposed CAE using contrastive loss to a 

onventional CAE using RMSE. We first explore the improvements 

n learning discriminative latent attributes, and then investigate 

he approach of applying classification directly on reconstruction 

rrors of contrastive CAE. 

For each different dimension of latent attributes, a two-layers 

LP classifier is separately tuned to project the learnt latent at- 

ributes to classes. The conventional CAE reaches its optimum UAR, 

pecificity, and MCC when using the latent attributes of the size 

f 50, and optimum sensitivity and AUC-ROC when using the la- 

ent attributes of the size of 500, as given in Table 5 . Its best

erformance indicates its limited capability in learning discrimina- 

ive latent attributes between symptomatic and asymptomatic seg- 

ents. As it considers no class information when learning latent 
6 
ttributes, it leaves the classification difficulty to the MLP classi- 

ers. The conventional CAE performs even worse than the CNN 

odel, further stressing the need of involving the class informa- 

ion in training a more efficient CAE. 

For the binary classification task, the classes’ difference can be 

mplicitly modelled in the contrastive loss as in Eq. (4) for train- 

ng the CAE, since the positive and negative reconstruction error 

re guided to produce a margin between each other in a discrim- 

native manner. Hence, the contrastive CAE is capable of learning 

atent attributes that represent salient features to distinguish be- 

ween symptomatic and asymptomatic segments. In our experi- 

ents, the contrastive CAE with an attribute dimensionality of 100 

chieves its best result in terms of UAR, sensitivity and AUC-ROC, 

nd when the dimensionality increases to 500, the proposed con- 

rastive CAE achieves the best specificity result, and a MCC of 0.247 

hich considerably outperforms the conventional CAE. 

Applying classification directly on the reconstruction errors, 

ather than the learnt latent attributes, is a more efficient way to 

se the contrastive CAE for our binary decision task. The decision 

hreshold between the reconstruction errors of symptomatic and 

symptomatic classes is determined using logistic regression on 

he training part for each cross-validation round. A 14-days heart 

ate segment is decided for as COVID-19 symptomatic (CD1/CD2 

riterion) if the reconstruction error is above the decision bound- 

ry. 

The best performance, shown in Table 6 , is achieved with the 

ttributes’ length equalling 100, achieving an UAR of 95 . 3% , a sen- 

itivity of 100 . 0% , a specificity of 90 . 6% , an AUC-ROC of 0.944, and

 MCC of 0.310. Generally, the contrastive CAE performs stably over 

ifferent attribute dimensionalities, reducing the difficulty in set- 

ing its proper dimensionality. An extreme case is to combine the 

ncoder and decoder by removing the latent attributes layer. The 
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Table 6 

Classification results [%] of the contrastive CAE with 4 encoder and 4 decoder layers 

based on the reconstruction error (rec. error) using logistic regression. # Attr: dimen- 

sionality of latent attributes. The last row indicates removing the latent attributes 

layer. 

# Attr. UAR Sensitivity Specificity AUC-ROC MCC 

50 93.9 100.0 87.7 0.927 0.270 

Contrastive 100 95 . 3 100 . 0 90 . 6 0.944 0.310 

CAE 300 91.5 100.0 83.0 0.890 0.226 

(rec. error) 500 92.4 100.0 84.8 0.895 0.240 

1000 94.4 100.0 88.9 0.936 0.284 

- 93.3 100.0 86.6 0.923 0.258 

Fig. 3. Training and testing curves illustrated by the reconstruction errors when using different margin sizes. 
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erformance, however, maintains stable as given in the last row of 

able 6 . 

.3. Effect of margin size 

Margin size represents the expected distance between the re- 

onstruction errors of positive and negative samples. Ideally, the 

econstruction error of a positive input pair is expected to be 0, 

nd that of a negative input pair to the margin m according to 

q. (4) . In practice, during the optimisation of the constrative CAE, 

he reconstruction errors can fluctuate around the expected out- 

ut in some range. Therefore, setting a too small margin may lead 

o an insufficient fluctuating region. For example, when setting 

 = 1 , the model cannot converge according to training and test- 

ng curves depicted in Fig. 3 . Increasing the margin to above 2, the

odel can successfully converge after enough training epochs, by 

reating the margin between the reconstruction errors of symp- 

omatic and asymptomatic segments. However, an unfit large mar- 

in (like m = 15 ) can lead to strong oscillation before the posi- 

ive reconstruction error reaches its expected margin value. Even 

 larger margin size can results in convergence failure. Besides, a 

roper margin should provide enough space for setting the deci- 
7 
ion threshold between the reconstruction errors of symptomatic 

nd asymptomatic segments. The impact of the margin size on 

lassification results can be seen in Table 7 . 

An interesting phenomenon can be observed for the success- 

ul training cases, especially when m is set to 10 or 15. At the 

egin of the training phase, the reconstruction errors of positive 

nd negative samples vary in the same direction, until a turning 

oint from where the two reconstruction errors diverge and then 

pproach to their individual expected output. One can understand 

he training procedure according to Eq. (4) . The optimisation of the 

ontrastive CAE starts with reconstructing the input of the encoder 

t the output of the decoder. Then it makes a concession to the 

reation of margin between the positive and negative reconstruc- 

ion errors, leading to their parallel increase for several epochs. Fi- 

ally, it compromises feature reconstruction and margin creation, 

esulting in the divergence of the two reconstruction errors. 

.4. Necessity of pre-training 

Previous work has demonstrated the generalisation effect when 

pplying pre-training in some representation learning techniques, 

uch as auto-encoders [30] . In this section, we compare the use of 
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Table 7 

Classification results [%] of the contrastive CAE with 4 encoder and 4 decoder layers based on the reconstruction error 

(rec. error) using different margin sizes. 

(m)argin UAR Sensitivity Specificity AUC-ROC MCC 

2 78.9 84.2 73.6 0.753 0.136 

Contrastive 3 91.4 100.0 82.8 0.905 0.224 

CAE 4 94.1 100.0 88.2 0.920 0.275 

(rec. error) 5 95 . 3 100 . 0 90 . 6 0.944 0.310 

10 90.5 94.7 86.2 0.861 0.238 

15 90.9 94.7 87.0 0.861 0.247 

Table 8 

Classification results [%] of the contrastive CAE with 4 encoder and 4 decoder layers based on the reconstruction error 

(rec. error) using different numbers of (#) participants for pre-training. 

# Participants UAR Sensitivity Specificity AUC-ROC MCC 

49 95.3 100.0 90.6 0.944 0.310 

Contrastive 40 95.9 100 . 0 91.7 0.950 0.329 

CAE 30 95.2 100.0 90.3 0.940 0.305 

(rec. error) 20 82.3 84.2 80.3 0.823 0.167 

10 79.8 84.2 75.4 0.737 0.143 

0 76.4 78.9 73.8 0.696 0.124 

Table 9 

Test results [%] for shifting the sliding window by days. 

# Days UAR Sensitivity Specificity AUC-ROC MCC 

−3 57.4 52.6 62.2 0.420 0.032 

−2 64.7 68.4 61.0 0.558 0.063 

−1 95.6 100.0 91.2 0.946 0.320 

0 95 . 3 100 . 0 90 . 6 0.944 0.310 

Contrastive 1 95.4 100.0 90.8 0.945 0.313 

CAE 2 96.1 100.0 92.1 0.957 0.337 

3 94.9 100.0 89.9 0.949 0.298 

4 87.4 94.7 80.2 0.823 0.193 

5 61.5 68.4 54.6 0.517 0.048 

Fig. 4. Reconstruction errors for continuous binary COVID-19 yes/no classification on 14-days heart rate windows of an exemplary individual (the same as in Fig. 1 , top). 
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ifferent numbers of participants for pre-training the contrastive 

AE. 

For each considered number of participants for pre-training, 

e apply random selection of participants. We then pre-train our 

odel using the selected participants while keeping the LOSO CV 

rocedure unchanged for evaluation. We run the selection proce- 

ure five times and the average testing results are given in Table 8 .

he model turns out to be effective when using at least 30 partic- 

pants for pre-training. As the number of participants drops below 

0, the classification performance declines, revealing the necessity 

f supplying the model with enough pre-training data to reach its 

ptimal performance. 

.5. Shifting of symptomatic segments 

Throughout all previous experiments, we keep assuming that 

he participant-reported onset date is identical to the real symp- 

om onset. The contrastive CAE performs effective on the symp- 

omatic segments that are centred at the reported symptom onset. 
8 
o explore the possibility to even make binary COVID-19 yes/no 

ecisions based on segments with a decentralised reported symp- 

om onset, we shift the window for sliding over the symptomatic 

egments to earlier and later days, while still containing the on- 

et date. The asymptomatic segments are kept unchanged as in the 

revious experiments. 

The experimental results, as seen in Table 9 , reveal that the 

odel works well for the heart rate segments that are shifted one 

ay forward or three days backward. However, segments that fur- 

her deviate from the original symptomatic segments, i. e., shifting 

he sliding window to two more previous days or four days later, 

esults in decreased classification performance. Potentially, partici- 

ants may have noticed the onset of their symptoms, but only re- 

orted this days later, resulting in an inaccurate reported date. Fur- 

her, segments shifted up to a few days later (maximally three days 

n our experiments) have higher certainty that symptoms are in- 

eed contained. Therefore, in both cases, our model achieves stable 

erformance. Also, there might be some participants whose symp- 

oms started earlier, and eased soon. In this case, segments that 
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re shifted many days later, may exclude the true symptomatic 

pisode, leading to a low classification performance. 

Fig. 4 illustrates using our contrastive CAE to continuously clas- 

ify COVID-19 yes/no based on CD1/CD2 symptom presence based 

n the example given on the top of Fig. 1 . The estimated recon-

truction errors indicate that the onset detection of the COVID-19- 

ike symptoms can be estimated in their earlier stage up to several 

ays later. 

. Conclusions 

We proposed a contrastive CAE to make a machine-learning- 

ased COVID-19 yes/no decision based on symptom presence de- 

ned by two criteria (CD1/CD2) given 14-days heart rate measure- 

ents from a Fitbit wristband. The models were pre-trained based 

n the heart rate data of 49 participants with MS who reported 

aving COVID-19-like symptoms. The models were then tested on 

ata of 19 MS participants whose reported symptoms met the 

riteria of CD1 or CD2, by means of LOSO CV. In this process, 

ach of the 19 symptomatic MS participants was paired with a 

ite-, gender-, and age-matched symptom-free MS participant. Ex- 

erimental results indicate that our proposed approach, incorpo- 

ating class information into optimising the CAE with contrastive 

oss, achieved considerable improvements over the conventional 

NN, CAE and other typical deep learning models in terms of per- 

ormance, evaluated as UAR, sensitivity, specificity, AUC-ROC, and 

CC. We tested the proposed model with different numbers of lay- 

rs, and different dimensions of latent attributes. The need of using 

nough data for pre-training was verified by having achieved a re- 

iable performance. In addition, adjusting the margin size within a 

roper range was shown to be crucial to stable convergence and 

lassification performance. 

Although the results have been obtained using heart rate es- 

imates provided by Fitbit, they are expected to be generalisable 

o any other device providing accurate heart rate measurements, 

nd better results could be obtained if the recorded PPG signal 

s accessible. The efficacy of contrastive CAE demonstrated in this 

ork provides the basis for further research. As representing a gen- 

ral binary classification method, we expect its widespread adop- 

ion, especially for the prediction of diseases other than COVID- 

9. In a departure from conventional unsupervised learning meth- 

ds for anomaly detection with auto-encoders, we present a self- 

upervised learning approach by supplying a training target that 

dapts the model to the objective of anomaly detection during 

ts optimisation. The benefit of this target-oriented optimisation 

trategy should not stay reserved to our COVID-19 yes/no scenario. 

ince the proposed method introduces an additional parameter, 

. e., margin size, the challenge lies in setting a proper margin size 

or new scenarios. Besides, the proposed model requires an appro- 

riate amount of data for pre-training, which hampers its adoption, 

. g., to the detection of rare diseases. In the short term, our pro-

osed contrastive CAE will be extended to multi-class paradigms 

n order to fit for a wider range of applications. 

Since the set-up of our experiments was chosen to detect 

hether or not the COVID-19-like symptoms appeared during a pe- 

iod of recorded heart rate data, the models show limitations in a 

ausal set-up, i. e., when trying to predict potential symptoms be- 

ore they are present. To this end, future work shall try to answer 

he question of how many days in advance we can reliably pre- 

ict the potential imminent onset of COVID-19-like symptoms. As 

he acquisition of data in the RADAR-CNS programme is still on- 

oing, the improvement of our proposed binary COVID-19 yes/no 

based on the symptom CD1/CD2 definitions above) classification 

odel based on a broader data foundation is expected. Further to 

hat, other windows of time should be analysed. Overall, we are 

ptimistic that an applicable decision can be made as to COVID-19 
9 
resence based on the symptoms defined herein based on machine 

earning analysis of consumer-type heart rate measurement. 
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